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The dynamic response of an axially accelerating string is investigated. The time
dependent velocity is assumed to vary harmonically about a constant mean velocity.
Approximate analytical solutions are sought using two different approaches. In the first
approach, the equations are discretized first and then the method of multiple scales is
applied to the resulting equations. In the second approach, the method of multiple scales
is applied directly to the partial differential system. Principal parametric resonances and
combination resonances are investigated in detail. Stability boundaries are determined
analytically. It is found that instabilities occur when the frequency of velocity fluctuations
is close to two times the natural frequency of the constant velocity system or when the
frequency is close to the sum of any two natural frequencies. When the velocity variation
frequency is close to zero or to the difference of two natural frequencies, however, no
instabilities are detected up to the first order of perturbation. Numerical results are
presented for a band-saw and a threadline problem.
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1. INTRODUCTION

Due to their technological importance, the dynamics of axially moving materials has
received considerable attention from many researchers. Threadlines, high speed magnetic
and paper tapes, strings, belts, band-saw blades, fibers, chains, beams and pipes
transporting fluids are some of the technological examples. The vast literature on axially
moving material vibrations is reviewed in the paper by Ulsoy et al. [1] and Wickert and
Mote [2]. The basic characteristics of such systems include a transport velocity dependent
natural frequency spectrum and the existence of a critical speed at which a divergence
instability occurs [1]. Recently, Wickert and Mote [3] investigated the transverse vibrations
of travelling strings and beams. They used travelling string eigenfunctions and introduced
a convenient orthogonal basis suitable for discretization. An alternative complex form is
also given by the same authors [4]. The effects of interspan coupling in dual-span axially
moving materials are investigated in a number of papers by Ulsoy [5] and Al-Jawi et al.
[6–8]. The vibration localization phenomenon is first introduced to the axially moving
materials in the mentioned papers [6–8].

With few exceptions, most of these studies have addressed the constant axial transport
velocity problem. However, technological devices are subject to accelerations and
decelerations which may significantly alter the dynamic response. Miranker [9] was the first
to derive the equations of motion for a string travelling with time dependent axial velocity.
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Later, Mote [10] investigated the problem of an axially accelerating string with harmonic
excitation at one end; he replaced the variable coefficients by their time averaged values
and investigated stability by Laplace transform techniques. Pakdemirli et al. [11] re-derived
the equations of motion for an axially accelerating string using Hamilton’s principle and
numerically investigated the stability of the response using Floquet theory. A sinusoidal
variation of the transport velocity, about a mean velocity of zero, is considered in the
analysis. Pakdemirli and Batan [12] considered a different type of velocity variation,
namely the periodic, constant acceleration–deceleration type.

In this study, we relax the constant velocity assumption by introducing a velocity
function having small harmonic fluctuations about a constant mean velocity. This model
better represents many real systems, since, in many applications, small variations in the
velocity are likely to occur. Because the tension is velocity dependent, the velocity
fluctuations also lead to tension fluctuations. In this sense, our study is closely related to
a recent study by Mockensturm et al. [13], in which tension fluctuations for a constant
velocity system were considered.

In this study, approximate analytical solutions are presented for the problem using the
method of multiple scales (a perturbation technique). Two different approaches are used
in finding the soloutions. In the first approach, the discretization–perturbation approach,
the equation of motion is cast into a system of first order equations and suitable orthogonal
basis functions are selected to discretize the equations. The formalism given by Wickert
and Mote [4] is followed. The discretized equations are then solved by applying the method
of multiple scales. In the second approach, the direct–perturbation approach, the method
of multiple scales is applied directly to the partial differential system. This second method
does not require transformation of the equations or the selection of an orthogonal basis.
The analysis is straightforward and integrals similar to those in orthonormality conditions
arise in finding the solvability conditions at higher orders of approximation. We believe
that this second approach is new to the axially moving materials literature.

Recently, comparisons of these two methods for specific and more general problems
have appeared in the literature. Nayfeh et al. [14] were the first to show that
direct–perturbation methods yield better results for finite mode truncations and for systems
having quadratic and cubic non-linearities. Later, Pakdemirli et al. [15] compared the
results of both methods for a non-linear cable vibration problem and showed that the
bifurcation and stability analysis might differ for both methods, with the direct
perturbation method better representing the behavior of the real system. Instead of
showing the discrepancies for specific problems. Pakdemirli [16] and Pakdemirli and
Boyaci [17] used a generalized equation form with arbitrary quadratic and cubic
non-linearities. Comparisons for finite mode truncations are presented in reference [16] and
for infinite modes in reference [17]. The major conclusion is that the direct perturbation
method yields more accurate results for finite mode truncations and for higher order
perturbation schemes. However in other cases, such as in the analysis presented here,
although the results are identical, the direct method has the advantage of being more
straightforward. For a partial review of the literature on comparisons between the two
methods, see reference [18].

In this study, we investigate the principal parametric resonances and combination
resonances for any two modes. We find that for velocity fluctuation frequencies near twice
any natural frequency, an instability region occurs whereas the frequencies close to zero,
no instabilities are detected. For combination resonances, instabilities occur only for those
of additive type. No instabilities are detected for difference type combination resonances
in agreement with reference [13]. Boundaries separating stable and unstable regions are
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determined analytically. The formalism derived is applied to two specific technological
problems of interest.

2. EQUATIONS OF MOTION

The system considered is a string or strip of length L moving with transport velocity
n*(t*). The equations of motion are derived in reference [11], using Hamilton’s principle:

rA(ÿ*+ v̇*y'*+2v*ẏ'*)+ (rAv*2 −P)y0*=0, y*(0, t*)= y*(L, t*)=0, (1)

where r is the mass density, A is the cross-sectional area and y* is the transverse
displacement of the string. The dot denotes differentiation with respect to time and the
prime denotes differentiation with respect to the spatial variable x. The dimensional
quantities are represented by an asterisk. Following reference [11], we assume that the
tension force varies with velocity according to the relation

P=P0 + hrAv*2 (2)

where P0 is the initial tension and 0E hE 1. We also define a pulley support parameter
k=1− h. In constant displacement mechanisms, such as tapes and threadlines, k can be
taken as 1, whereas in constant tension mechanisms k=0. Inserting equation (2) into
equation (1), we have

rA(ÿ*+ v̇*y'*+2v*ẏ'*)+ (krAv*2 −P0)y0*=0. (3)

Defining the non-dimensional quantities

x= x*/L, y= y*/L, t=(1/L)z(P0/rA)t*, v= v*/zP0/rA (4)

and inserting into equation (3), we obtain

ÿ+ v̇y'+2vẏ'+ (kv2 −1)y0=0, y(0, t)= y(1, t)=0. (5)

Note that the velocity is non-dimensionalized with respect to the wave velocity zP0/rA.
We now assume a velocity function which allows for small harmonic variations about

a non-dimensional mean velocity v0 as follows:

v= v0 + ov1 sin Vt, (6)

where o is a small non-dimensional parameter (o�1), v1 is of the same order as v0 and V

is the non-dimensional frequency of velocity variations. Note that this non-dimensional
frequency is related to the dimensional one through the relation

V*=
1
LXP0

rA
V. (7)

In reference [11], a special case of the above problem, in which the mean velocity v0 =0,
has been investigated numerically.

3. PRINCIPAL PARAMETRIC RESONANCE

In this section, analytical solutions are presented using the method of multiple scales (a
perturbation technique), [19, 20]. Two different approaches are considered in the
analysis. In the first approach, the equations are discretized first and then perturbation
is applied to the resulting equations (discretization–perturbation method). In the
second approach, perturbation is applied directly to the partial differential system
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(direct–perturbation method). This second method is new in the axially moving materials
research context. Parametric resonance of V2 0, V2 2vn and V away from 0 and 2vn

cases are investigated (vn being the natural frequency of a string travelling at constant
velocity). It is found that only V2 2vn leads to instabilities and the boundaries separating
stable and unstable regions are calculated analytically.

3.1. – 

In this method, we first cast the equations in a convenient first order form and then
discretize the equations using orthogonal basis functions. This method was first proposed
by Wickert and Mote [3]. They adopted the method from the solutions presented by
Meirovitch [21, 22] for gyroscopic systems. Later, Wickert and Mote [4] presented an
alternative complex form of the discretization process. The idea is to use travelling string
eigenfunctions instead of the stationary string eigenfunctions. It is demonstrated through
numerical simulations that the usual choice of stationary string eigenfunctions has poor
convergence properties [11, 12]. Taking only one mode of travelling string eigenfunction
yields comparable results with those of four modes of stationary string eigenfunctions [13].
The convergence is superior since the physics of the problem involves motion which can
be captured better through traveling eigenfunctions. This method has been well established
and frequently used in the literature [23–25].

The travelling string eigenfunctions are not orthogonal. To employ the orthogonality
conditions, the gyroscopic character of the equations should be first reflected by casting
the equation to a suitable first order form. We first substitute equation (6) into equation
(5), keep terms up to O(o) and obtain

ÿ+2v0ẏ'+ (kv2
0 −1)y0+ o{2v1 sin Vtẏ'+2kv0v1 sin Vty0+Vv1 cos Vty'}=0. (8)

Defining the operators

M= I, G=2v0
1

1x
, K=(kv2

0 −1)
12

1x2,

L1 =2v1
1

1x
, L2 =2kv0v1

12

1x2, L3 =Vv1
1

1x
(9)

and substituting into equation (8), we have

Mÿ+Gẏ+Ky+ o{sin Vt(L1ẏ+L2y)+ cos Vt(L3y)}=0. (10)

The equations are cast into a first order equation as follows:

Aẇ +Bw+ o{sin VtC+cos VtD}w= 0, (11)

where

w=$ẏy%, A=$M0 0
K%, B=$ G

−K
K
0%, C=$L1

0
L2

0 %, D=$00 L3

0 %. (12)

The above form is convenient, especially for the discretization analysis. A base function
having orthogonality properties with respect to matrices A and B is selected:

Fn =$lncn

cn %, (13)
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where
ln =ivn , cn =Cn eianx sin npx, (14)

vn =
np(1− kv2

0 )

z1− kv2
0 + v2

0

, an =
npv0

z1− kv2
0 + v2

0

. (15)

cn are the mode shapes corresponding to the travelling string with constant velocity v0 and
vn are the corresponding frequencies.

Following reference [4], we define the inner product

�w1, w2�=g
1

0

wT
1 w̄2 dx, (16)

With respect to this inner product, the Fn possess the following orthonormality properties:

�AFn , Fm�= dnm , �BFn , Fm�=−lndnm , (17)

where Cn is normalized such that

Cn =
1

npz1− kv2
0

. (18)

For discretization, we now assume a solution of the type

w= s
a

m=31,3 2,...

jm (t)Fm (x)= s
a

m=1,2,...

jm (t)Fm (x)+ j�m (t)F�m (x), (19)

where the overbar denotes the complex conjugate. Following references [3, 4, 13, 21–25],
we assume that the eigenfunctions are complete, i.e., any arbitrary function in the domain
of interest can be written in terms of the infinite sum of those eigenfunctions. Generally
speaking, the eigenfunctions arising from solutions of physical systems are always
complete. However, a more mathematical proof is beyond the scope of this work.

Substituting equation (19) into equation (11), taking the inner product with a vector Fn ,
we finally obtain

j� n − lnjn + o s
a

m=1,2,...

{sin Vt(jm�CFm , Fn�+ j�m�CF�m , Fn�)+ cos Vt(jm�DFm , Fn�

+ j�m�DF�m , Fn�)}=0, n=1, 2, 3, . . . . (20)

For a one-mode approximation (considering only the nth mode), the equations reduce
to the following simple form:

j� n − lnjn + o{sin Vt(jn�CFn , Fn�+ j� n�CF� n , Fn�)+ cos Vt(jn�DFn , Fn�

+ j� n�DF� n , Fn�)}=0. (21)

To determine the principal instabilities, we apply the method of multiple scales to equation
(21). We assume an expansion of the form

jn (t; o)= jn0(T0, T1)+ ojn1(T0, T1)+ · · · , (22)

where T0 = t and T1 = ot are the usual fast and slow time scales. The time derivatives are
defined as

d/dt=D0 + oD1 + · · · , D0 = 1/1T0, D1 = 1/1T1. (23)



.   . . 820

Inserting equations (22) and (23) into equation (21) and separating terms at each order
of o, we have

O(1): D0jn0 − ivnjn0 =0, (24)

O(o): D0jn1 − ivnjn1 =−D1jn0 − sin VT0(jn0�CFn , Fn�+ j�n0�CF� n , Fn�)

− cos VT0(jn0�DFn , Fn�+ j�n0�Df�n , fn�). (25)

The solution at O(1) is

jn0 =An (T1) eivnT0, (26)

where An (T1) are the complex amplitudes slowly varying with time. Inserting equation (26)
with the identities

cos VT0 = 1
2(e

iVT0 + e−iVt0), sin VT0 =−
i
2

(eiVT0 − eiVT0) (27)

into equation (25) and rearranging, we have

D0jn1 − ivnjn1 =−D1An eivnT0 +An ei(V+vn )T06 i
2

�CFn , Fn�− 1
2�DFn , Fn�7

+A�n ei(V−vn )T06 i
2

�CF� n , Fn�− 1
2�DF� n , Fn�7

+A�n ei(vn −V)T06−i
2

�CFn , Fn�− 1
2�DFn , Fn�7

+A�n e−i(V+vn )T06−i
2

�CF� n , Fn�− 1
2�DF� n , Fn�7. (28)

Inspecting equation (28), we observe that three cases should be investigated separately.

3.1.1. Case I: V away from 0 and 2vn

For this case, elimination of secular terms yields

D1An =0. (29)

Therefore, up to O(o), we obtain constant amplitude solutions.

3.1.2. Case II: V2 2vn

For this case, we first express the nearness of V to 2vn by employing the relation

V=2vn + os, (30)

where s is a detuning parameter of O(1). Substituting equation (30) into equation (28) and
eliminating the secular terms yields

D1An +(k1 − ik2)A�n eisT1 =0, (31)

where

k1 = (kv1/4) sin 2an , k2 = (kv1/4)(1−cos 2an ). (32)
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Note that an is defined in equation (15).

3.1.3. Case III: V2 0
Similar to the previous case, we express the nearness of V to zero as

V= os. (33)

Substituting equation (33) into equation (28) and eliminating the secular terms, we have

D1An +(k3 cos sT1 + ik4 sin sT1)An =0, (34)

where

k3 =
v0v1V

2(1− kv2
0 + v2

0 )
, k4 =

npv0v1[1+ k(1− kv2
0 + v2

0 )]
(1− kv2

0 + v2
0 )3/2 , (35)

3.2. – 

In this alternative approach, we apply the method of multiple scales directly to the
partial differential system. The advantage is that we do not need to cast the equations into
a first order form and define orthonormality conditions. Conditions similar to those for
orthonormality arise when finding the solvability conditions at higher orders of
approximation in a straightforward manner. It is shown that the results obtained are
identical with the discretization–perturbation case. However, for non-linear systems and
for higher order perturbation schemes, it is well known that the direct–perturbation
method yields more accurate results for finite mode truncations [14–18].

We rewrite the partial differential equation (8) as our starting point:

ÿ+2v0ẏ'+ (kv2
0 −1)y0+ o{2v1 sin Vtẏ'+2kv0v1 sin Vty0+Vv1 cos Vty'}=0,

y(0, t)= y(1, t). (36)

We assume an expansion of the form

y(x, t; o)= y0(x, T0, T1)+ oy1(x, T0, T1)+ · · · (37)

Substituting this expansion, together with the time derivatives defined in equation (23), into
equation (36) and separating terms at each order of o, we finally obtain

O(1): D2
0y0 +2v0D0y'0 + (kv2

0 −1)y00 =0, (38)

O(o): D2
0y1 +2v0D0y'1 + (kv2

0 −1)y01 =−2D0D1y0 −2v0D1y'0 −2v1 sin VT0D0y'0

−2kv0v1 sin VT0y00 −Vv1 cos VT0y'0 . (39)

The solution at O(1) is

y0(x, T0, T1)=An (T1) eivnT0cn (x)+A�n (T1) e−ivnT0c�n (x), (40)

where cn (x) and vn are given in equations (14) and (15). Substituting this solution into
equation (39) and rearranging, we finally obtain

D2
0y1 +2v0D0y'1 + (kv2

0 −1)y01 =D1An eivnT0(−2ivncn −2v0c'n )

+An ei(V+vn )T0$−v1vnc'n +ikv0v1c0n −
Vv1

2
c'n%
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+A�n ei(V−vn )T0$v1vnc�'n +ikv0v1c�0n −
Vv1

2
c�'n%+ cc, (41)

where cc denotes the complex conjugate of all preceding terms. Since all results are
identical with the previous section, for illustration purposes, we only present results for
the case of the frequency being approximately twice one of the natural frequencies of the
system.

3.2.1. V2 2vn

We again express the nearness of V to 2vn by the relation

V=2vn + os. (42)

Substituting equation (42) into equation (41) and arranging terms, we have

D2
0y1 +2v0D0y'1 + (kv2

0 −1)y01 =D1An eivnT0(−2ivncn −2v0c'n )

+A�n eivnT0 eisT1$v1vnc�'n +ikv0v1c�0n −
Vv1

2
c'n%+NST+ cc, (43)

where NST denotes non-secular terms.
We now assume a solution of the form

y1(x, T0, T1)=Y(x, T1) eivnT0 +W(x, T0, T1)+ cc, Y(0, T1)=Y(1, T1)=0, (44)

where W(x, T0, T1) is the solution of the non-homogeneous equation having only
non-secular terms at the right side. Therefore W(x, T0, T1) exists, unique and free from
secular terms. Y(x, T1) is determined by the equation

−v2
nY+2v0ivnY'+ (kv2

0 −1)Y0=−2(ivncn + v0c'n )D1An

+0v1vnc�'n +ikv0v1c�0n −
Vv1

2
c�'n1A�n eisT1. (45)

The homogeneous part of this equation possesses a non-trivial solution. For the
non-homogeneous equation to possess a solution a solvability condition should be
satisfied. (See details of finding solvability conditions in reference [19], chapter 15).

To find this solvability condition, we multiply equation (45) by an arbitrary function
u(x), integrate over the domain, and carry all differential operators from Y to u(x) using
integration by parts. The final result is

g
1

0

{−v2
nu−2v0ivnu'+ (kv2

0 −1)u0}Y dx+(kv2
0 −1)uY'=10 =g

1

0

u(RHS) dx, (46)

where RHS denotes the right side terms in equation (45). Since u(x) is arbitrary, we now
choose u(x) so that the integral and the second term vanishes, leading to the differential
system

−v2
nu−2v0ivnu'+ (kv2

0 −1)u0=0, u(0)= u(1)=0. (47)

This problem is actually the adjoint problem of the original equation. The solution is

u=c�n (x) (48)
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where u turns out to be the complex conjugate of the eigenfunctions of the travelling string
(see equation (14)).The solvability condition can now be written as

g
1

0

c�n (RHS) dx=0. (49)

Therefore, the solvability condition requires that the complex conjugate of constant
velocity eigenfunctions be orthogonal to the right side of equation (45). Note that this
condition yields similar integrals with the orthonormality conditions given in the previous
method. However, finding this solvability condition is straightforward and requires only
the solution of the adjoint problem.

Inserting the appropriate terms in equation (49) and performing the integrals, we finally
obtain the modulation equation for the complex amplitudes:

D1An +(k1 − ik2)A�n eisT1 =0, (50)

where the coefficients are defined in equation (32). Equation (50) is exactly the same
equation as given in equation (31) obtained using the discretization–perturbation method.

The cases V2 0 and V away from 0 and 2vn yield also results identical to those of the
previous section. For the sake of brevity, we refrain from presenting the calculations for
those cases.

3.3.  

We determine the stability of the amplitude modulation equations for the cases of V2 0
and V2 2vn . We already found that when V is away from 0 and 2vn , the solutions are
always bounded up to O(o).

3.3.1. Case I: V2 0
For this case, the complex amplitude modulation equation is found to be

D1An +(k3 cos sT1 + ik4 sin sT1)An =0, (51)

where the k3 and k4 coefficients are given in equations (35). A direct integration yields

An =A0 exp 0−k3

s
sin sT1 + i

k4

s
cos sT11. (52)

It is evident that solutions are always bounded as T1:a, because −1E sin sT1 E 1 and
−1E cos sT1 E 1. Therefore, for very small frequencies we do not expect any instabilities
up to O(o).

3.3.2. Case III: V2 2vn

From equation (31) or (50), we write

D1An +(k1 − ik2)A�n eisT1 =0. (53)

First, we introduce the transformation

An =Bn eisT1/2. (54)

Then we insert equation (54) into equation (53), and obtain

D1Bn +
is
2

Bn +(k1 − ik2)B�n =0. (55)
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Separating real and imaginary parts and calculating the eigenvalues of the coefficient
matrix, we find

l=31
2z−s2 +4(k2

1 + k2
2 ). (56)

In the interval −2zk2
1 + k2

2 Q sQ 2zk2
1 + k2

2 the response is unstable, whereas it is
stable outside this region. Therefore, the stability boundaries are determined by

s=32zk2
1 + k2

2. (57)

Substituting for k1 and k2 from equations (32)–(57), and inserting the results into equation
(42), we finally obtain

V=2vn 3 ov1k sin an . (58)

For constant tension mechanisms, k=0, and the instability regions close up to O(o).
Hence, for this type of instability, decreasing k increases the stability. When the mean
velocity is zero, an is zero and again the instability regions close up to O(o). Further
comments on the vanishing mean velocity case as well as comparisons with reference [11]
are presented in section 5. When the amplitude of fluctuations v1 increases, the stability
regions widen, as expected. For constant displacement mechanisms, k=1, and equation
(58) takes the form

V=2np(1− v2
0 )3 ov1 sin (npv0). (59)

Plots of these stability boundaries will be presented in section 5 for band-saw and
threadline problems.

4. COMBINATION RESONANCES

In this section, we assume that there are two dominant modes and investigate the
combination resonances for the sum and difference of these modes with the frequency.
Taking the nth and mth modes only, the discretized equations take the form

j� n −ivnjn + o{sin Vt(jn�CFn , Fn�+ j�n�CF� n , Fn�+ jm�CFm , Fn�

+ j�m�CF�m , Fn�)+ cos Vt(jn�DFn , Fn�

+ j�n�DF� n , Fn�+ jm�DFm , Fn�+ j�m�DF�m , Fn�)}=0, (60)

j� m −ivmjm + o{sin Vt(jn�CFn , Fm�+ j�n�CF� n , Fm�+ jm�CFm , Fm�

+ j�m�CF�m , Fm�)+ cos Vt(jn�DFn , Fm�

+ j�n�DF� n , Fm�+ jm�DFm , Fm�+ j�m�DF�m , Fm�)}=0. (61)

Assuming again approximate solutions of the form

jn (t; o)= jn0(T0, T1)+ ojn1(T0, T1)+ . . . ,

jm (t; o)= jm0(T0, T1)+ ojm1(T0, T1)+ . . . (62)

and applying the method of multiple scales to the equations, performing the
straightforward algebra and eliminating the secular terms, we finally obtain the following
results for sum and difference type of combination resonances.
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Case I: V2vm +vn

The frequency detuning is defined as

V=vm +vn + os (63)

and the complex amplitude modulation equations are

D1An + a1A�m eisT1 =0, D1Am + a2A�n eisT1 =0, (64, 65)

where

a1 =−
i
2

�CF�m , Fn�+ 1
2�DF�m , Fn�, a2 =−

i
2

�CF� n , Fm�+ 1
2�DF� n , Fm�. (66)

Case II: V2vm −vn

Without loss of generality, we assume that mq n. The frequency detuning is defined
as

V=vm −vn + os (67)

and the complex amplitude modulation equations are

D1An + a3Am e−isT1 =0, D1Am + a4An eisT1 =0, (68, 69)

where

a3 =
i
2

�CFm , Fn�+ 1
2�DFm , Fn�, a4 =−

i
2

�CFn , Fm�+ 1
2�DFn , Fm�. (70)

4.1.  

We determine the stability of the solutions for each case.

4.1.1. Combination resonances of sum type
For equations (64) and (65), we first introduce the transformation

An =Bn eisT1/2, Am =Bm eisT1/2 (71)

and obtain

D1Bn +
is
2

Bn + a1B�m =0, D1Bm +
is
2

Bm + a2B�n =0. (72, 72)

At this stage, we have two choices: (1) to determine stability from the complex equations
above, or (2) to separate the equations into real and imaginary parts. The latter approach
increases the algebra unnecessarily, hence we choose to determine stability from the
complex amplitude modulation equations. Assuming that equations (72) and (73) possess
solutions of the form

Bn = bn elT1, Bm = bm el�T1 (74)

and substituting them into the equations, taking the complex conjugate of the second
equation, we obtain for non-trivial solutions

l=31
2z−s2 +4a1ā2. (75)

Since a1ā2 q 0 always, the stability boundaries are determined by

s=32za1ā2. (76)
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Calculating a1 and a2 from equation (66), we obtain the explicit relations

a1ā2 =4k1k2 sin2 0an + am

2 1, n+m even, (77)

a1ā2 =4k1k2 cos2 0an + am

2 1, n+m odd, (78)

where

k1 =
nv1[−(n−m)2 + (n+m)2kv2

0 ]
2(n+m)[−4nmv2

0 + (n−m)2(1− kv2
0 )]

, (79)

k2 =
mv1[−(n−m)2 + (n+m)2kv2

0 ]
2(n+m)[−4nmv2

0 + (n−m)2(1− kv2
0 )]

. (80)

Therefore the stability regions are given by

V=vm +vn 3 o4zk1k2 sin 0an + am

2 1, n+m even, (81)

V=vm +vn 3 o4zk1k2 cos 0an + am

2 1, n+m odd, (82)

Note that, for m= n, equation (81) reduces to equation (58). Stability boundaries will be
plotted in section 5 for band-saw and threadline examples.

4.1.2. Combination resonances of difference type
We first introduce the following transformation

An =Bn e−isT1/2, Am =Bm eisT1/2, (83)

and obtain, from equations (68) and (69),

D1Bn −
is
2

Bn + a3Bm =0, D1Bm +
is
2

Bm + a4Bn =0. (84, 85)

We assume solutions of the form

Bn = bn elT1, Bm = bm elT1. (86)

For non-trivial solutions,

l=31
2z−s2 +4a3a4. (87)

Calculating a3 and a4 from equation (70), we have

a3a4 =−4k3k4 sin2 0am − an

2 1, m− n even, (88)

a3a4 =−4k3k4 cos2 0am − an

2 1, m− n odd, (89)
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where

k3 =
nv1[(m2 + n2)(1− kv2

0 )+2mn(1+ kv2
0 )]

2(m− n)[(m+ n)2(1− kv2
0 )+ (4mnv2

0 )]
, (90)

k4 =
mv1[(m2 + n2)(1− kv2

0 )+2mn(1+ kv2
0 )]

2(m− n)[(m+ n)2(1− kv2
0 )+ (4mnv2

0 )]
, (91)

Since k3k4 q 0 always for speeds below the critical speed, v0 E 1/zk, from equation
(88) and (89) we conclude that a3a4 Q 0 always. Hence, the eigenvalues are always
imaginary. Therefore, no instabilities are detected for combination resonances of
difference type up to O(o). This result is in agreement with the one given in
Mockenstrum et al. [13] for similar problem. Note that in that analysis, only the first
and second modes are considered whereas in our analysis, resonances of any arbitrary
two modes are taken into account.

5. NUMERICAL EXAMPLES

In this section, we give numerical results for two examples of technological importance.
We investigate the stability of a band-saw and a threadline. Since the stability boundaries
are given analytically in the previous section, any other problem of interest can be
examined in a straightforward manner. Before concluding the section, we also discuss
results of reference [11] and make some comparisons.

5.3. -

Numerical data are given for a commercial band-saw in Table 1, taken from
reference [26]. The wave velocity is zP0/rA=90·5327 m/s. For an average speed of
50 m/s, the non-dimensional velocity is v0 =0·5523. For v0 =0·5523 and k=0·21, the
principal parametric instabilities (V2 2vn ) are plotted in Figure 1 for the first
three natural frequencies. The instability region for the second natural frequency is
so narrow that it appears as a line. For the same v0 and k values, the combination
resonances of sum are plotted in Figure 2 for V2v1 +v2, v1 +v3, v2 +v3.
The instability region is relatively large for V2v1 +v3 compared to other
frequencies. Note that the frequencies are non-dimensional in all plots. A change to
dimensional quantities are achieved through equation (7), where V* is the dimensional
frequency. The lowest dimensional frequencies around which instabilities occur are as
follows:

principal parametric resonances, V*2 803, 1606, 2409, . . . (rad/s);
combination resonances of sum, V*2 1204, 1606, 2007, . . . (rad/s).
The above frequencies are very high for current operating mechanisms. However, for

higher transport velocities v0, the critical frequencies decrease.

T 1

Parameter values for commercial band-saw [26]

Parameter Value Unit

P0 25 900 N
r 7800 kg/m3

A 4·0513×10−4 m2

k 0·21 —
L 0·5953 m
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Figure 1. Stable and unstable regions for principal parametric resonances for a commercial band-saw:
k=0·21, v0 =0·5523, V2 2v1, 2v2, 2v3.

5.2. 

The numerical data for this case are given in Table 2. The wave velocity is calculated
to be 31·6228 m/s. For an average speed of 5 m/s, the non-dimensional velocity is 0·1581.
For v0 =0·1581 and k=1, the principal parametric stable-unstable regions are plotted in
Figure 3 for the first three natural frequencies using equation (59). For the same v0 and
k values, the combination resonances of sum are plotted in Figure 4. Conversion to
dimensional frequencies yields the following:

principal parametric resonances, V*2 194, 388, 582, . . . (rad/s);
combination resonances of sum, V*2 291, 388, 484, . . . (rad/s).
Note that critical frequencies are much lower for this case, compared to the band-saw

problem.

5.3.     -    [11]
Reference [11] presents numerical results for stability of an accelerating string. The

problem investigated is a special case of our problem where the mean velocity is zero. The

Figure 2. Stable and unstable regions for combination resonances of sum for a commercial band-saw: k=0·21,
v0 =0·5523, V2v1 +v2, v1 +v3, v2 +v3.
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Figure 3. Stable and unstable regions for principal parametric resonances for a threadline: k=1, v0 =0·1581,
V2 2v1, 2v2, 2v3.

amplitude of fluctuations, ov1 in our notation, is equivalent to v0 in reference [11].
Stationary string eigenfunctions are used in the discretization process. For vanishing mean
velocity, our eigenfunctions also reduce to the stationary string eigenfunctions. Note that
our analytical results are valid for small fluctuation amplitudes whereas numerical data
are presented in reference [11] for large amplitudes also.

In our analysis, due to the excellent convergence properties of travelling string
eigenfunctions, we consider one-term and two-term approximations. However, our
one-term and two-term approximations are not the first and second mode approximations
considered in reference [11]. Rather, they are any arbitrary one or two modes that are
assumed to be dominant in the response of the system. When the mean velocity is zero,
the eigenfunctions reduce to the stationary string eigenfunctions, which are well known
for their poor convergence characteristics. However, for small amplitudes of fluctuations,
the convergence might be better.

Our results can be compared to the numerical results for one-term and two-term
approximations in reference [11]. To distinguish from this text, all references to the

Figure 4. Stable and unstable regions for combination resonances for sum for a threadline: k=1, v0 =0·1581,
V2v1 +v2, v1 +v3, v2 +v3.
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T 2

Parameter values for a threadline

Parameter Value Unit

P0 10 N
rA 0·01 kg/m
k 1 —
L 1 m

equations, tables and figures in reference [11] will be given with a ‘‘P’’ prefix. For the
one-term approximation, we find that the instability regions close up to O(o) (see equation
(58)). Therefore, for v0 =0, no instabilities are detected. This result is in agreement with
reference [11]. For the one-term approximation (the first mode actually), equation (P17)
is obtained using discretization. The v2 term is of O(o2), and hence should be neglected.
The remaining terms produce periodic bounded solutions. If we carry out analysis to O(o2),
some of the weaker instabilities might also be detected as shown in Figure P2.

For two-term approximations, the stable and unstable points are shown in Figure P5.
In the frequency range of 0Ev0 E 50, no instabilities were detected for small amplitudes
of velocity. This result is in agreement with what we found here. We expect the lowest
instability at V2v1 +v2 2 3p or V2 1113 in our analysis. The numerical calculation
presented for this point reveals that there is indeed instability at that point (see Table P4).

A number of comments follows for section P4.3. In that section, numerical results of
reference [11] are compared to the analytical results of reference [27]. To make
comparisons, equation (P26) is cast into equation (P27). The choice of the perturbation
parameter o= v0/L is not good since it is dimensional. However, by choosing v0 very small
(v0 =0·01), the pitfalls of this choice is avoided in some sense. The definition of B(0) in
equation (P30) should not contain kv2

0 /L2 terms since they are of O(o2). By the same token,
the second matrix should be eliminated completely from equation (P31). This last
elimination requires that s=1 only (see reference [27]). Therefore from equation (P32),
the critical points are the combination resonances of sum and difference in agreement with
our analysis. We further found that combination resonances of difference would not yield
to instability.

Natural frequencies in equation (P33) should be written as

V2
i =

P0

rA
i2p2

L2 .

There is a misprint involving squaring in equation (P33) and kv2
0 /L2 should be neglected.

The numerical data of Tables P4 and P5, as well as all other data presented in the
tables and figures of reference [11] are accurate. However, the determination of critical
points where instability may occur using the analytical approach contains excess data in
Tables P4 and P5. Table P4 should, for example, contain only the frequencies of 371 and
1113. Data 371 corresponds to V2 −V1 and is found to be stable numerically. This is in
agreement with our analysis, since we also predict the difference type combination
resonances do not lead to instabilities. Data 1113, as mentioned before, corresponds to
the additive type combination resonances of the first and second modes which is
unstable numerically. This result is also in agreement with our analytical approach.
Consequently, the results presented here are in agreement with those in reference [11], but
more complete.
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6. CONCLUDING REMARKS

An analytical approach to the stability of a string travelling with a time dependent
velocity is presented. The velocity function is assumed to be harmonically varying about
a constant mean velocity. The influence of the small fluctuations on the stability of the
system is investigated. The method of multiple scales (a perturbation technique) is used
to calculate the boundaries separating stable and unstable regions. Two different
approaches are presented in the analysis. In the first approach, the equations are discretized
first and then the method of multiple scales is applied to the resulting equations. In the
second approach, the method of multiple scales is directly applied to the partial differential
system. Although both methods yield identical results, the latter approach is more
straightforward. Principal parametric resonances and combination resonances of sum and
difference type are considered in the analysis. It is found that instabilities arise when
V2 2vn for a one-mode approximation and V2vm +vn for a two-mode approximations.
When V2 0 for a one mode approximation and V2vm −vn for a two-mode
approximations, however, no instabilities are detected up to the first order of
approximation. The analysis is applied to a band-saw and a threadline problem.
Boundaries separating stable and unstable regions are plotted for both cases. It is found
that these types of instabilities do not occur unless the fluctuation frequencies are
considerably larger compared to those of typical working mechanisms.

If the analysis is carried to higher orders of perturbations, the weaker resonances would
appear at relatively low frequencies. However, these secondary resonances would not be
as effective as the primary ones.
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